ML Flow
Voici la liste complète des méthodes de la classe MLflowClient
dans la version 2.17.2 :
Méthodes de gestion des expériences :¶
create_experiment(name, artifact_location=None, tags=None)
get_experiment(experiment_id)
get_experiment_by_name(name)
list_experiments(view_type=ViewType.ACTIVE_ONLY, max_results=None, page_token=None)
delete_experiment(experiment_id)
restore_experiment(experiment_id)
rename_experiment(experiment_id, new_name)
set_experiment_tag(experiment_id, key, value)
delete_experiment_tag(experiment_id, key)
Méthodes de gestion des runs :¶
create_run(experiment_id, start_time=None, tags=None, run_name=None)
get_run(run_id)
delete_run(run_id)
restore_run(run_id)
list_run_infos(experiment_id, run_view_type=ViewType.ACTIVE_ONLY, max_results=None, page_token=None)
search_runs(experiment_ids=None, filter_string='', run_view_type=ViewType.ACTIVE_ONLY, max_results=100, order_by=None, page_token=None)
set_terminated(run_id, status=None, end_time=None)
log_param(run_id, key, value)
log_params(run_id, params)
log_metric(run_id, key, value, timestamp=None, step=None)
log_metrics(run_id, metrics, timestamp=None, step=None)
set_tag(run_id, key, value)
set_tags(run_id, tags)
delete_tag(run_id, key)
log_batch(run_id, metrics=None, params=None, tags=None, dataset_inputs=None)
get_metric_history(run_id, key)
get_metric_history_bulk(run_id, metric_keys)
Méthodes de gestion des artefacts :¶
log_artifact(run_id, local_path, artifact_path=None)
log_artifacts(run_id, local_dir, artifact_path=None)
list_artifacts(run_id, path=None)
download_artifacts(run_id, path, dst_path=None)
upload_artifact(run_id, artifact_file, artifact_path=None)
upload_artifacts(run_id, artifact_dir, artifact_path=None)
get_artifact_uri(run_id, artifact_path=None)
download_artifact_from_uri(artifact_uri, output_path=None)
Méthodes du registre de modèles :¶
create_registered_model(name, tags=None, description=None)
get_registered_model(name)
search_registered_models(filter_string='', max_results=None, order_by=None, page_token=None)
delete_registered_model(name)
rename_registered_model(name, new_name)
update_registered_model(name, description=None)
set_registered_model_tag(name, key, value)
delete_registered_model_tag(name, key)
get_latest_versions(name, stages=None)
create_model_version(name, source, run_id=None, tags=None, run_link=None, description=None)
get_model_version(name, version)
delete_model_version(name, version)
update_model_version(name, version, description=None)
transition_model_version_stage(name, version, stage, archive_existing_versions=False)
set_model_version_tag(name, version, key, value)
delete_model_version_tag(name, version, key)
get_model_version_download_uri(name, version)
search_model_versions(filter_string='', max_results=None, order_by=None, page_token=None)
Méthodes de gestion des datasets :¶
create_dataset(name, source=None, schema=None, profile=None, tags=None, description=None)
get_dataset(name)
delete_dataset(name)
search_datasets(filter_string='', max_results=None, order_by=None, page_token=None)
set_dataset_tag(name, key, value)
delete_dataset_tag(name, key)
create_dataset_version(dataset_name, source, schema=None, profile=None, description=None, tags=None)
get_dataset_version(dataset_name, version)
delete_dataset_version(dataset_name, version)
search_dataset_versions(filter_string='', max_results=None, order_by=None, page_token=None)
set_dataset_version_tag(dataset_name, version, key, value)
delete_dataset_version_tag(dataset_name, version, key)
Méthodes pour les entrées de run :¶
log_inputs(run_id, datasets=None, tags=None)
Méthodes diverses :¶
set_tracking_uri(uri)
get_tracking_uri()
set_registry_uri(uri)
get_registry_uri()
Cette liste couvre toutes les méthodes publiques disponibles dans la classe MLflowClient
pour la version 2.17.2, conformément au code source disponible sur le dépôt GitHub de MLflow.